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S U P E R S O N I C  F L O W  P A S T  A B L U N T  B O D Y  

N. N. Pilyugin, R. F. Talipov, and S. V. Utyuzhnikov UDC 532.526.2 

The study of flow field and heat exchange about blunt bodies when the oncoming supersonic stream is substantially 

nonuniform has been of much practical interest lately. In [1] we considered the results of experimental and theoretical study of 

the resistance, heat exchange, and the gasdynamic picture of the flow past a pair of bodies, one of which is behind the other 
in a supersonic stream. The experimental results in [1] were obtained for a relatively small separation between the bodies (no 

more than 20 calibers). The study is carried out by theoretical methods when the bodies are separated by a large distance (several 

hundred calibers) [2-6]. In [2, 3] we obtained asymptotic solutions for the problem of the flow of a nonuniform wake-type stream 
past a blunt body for moderate (Re** < 103) and high (Re** > 105) Reynolds numbers. In [1, 4-6] as a result of numerical 

solution of the equations of a thin viscous shock layer (on the assumption that the shock wave is equidistant from the surface 
of the body) we obtained relations for the heat exchange, friction, and the criterion of flow without separation as functions of 
the parameters of the problem. 

For a uniform mainstream the method of a thin viscous shock layer (TVSL) gives results that are in satisfactory 

agreement with calculations with more exact methods [7, 8]. The applicability of the TVSL method [4-6] and asymptotic 

formulas [2, 3] to the case of a nonuniform supersonic stream of the far wake type flowing past a blunt body has not been 
examined sufficiently. 

It is a particularly complicated matter to prove that the asymptotic expansions converge to an exact solution of the 
problem when there are several small parameters in which the expansions are made (t = P**/Ps, Re** -lcz, M** -2, etc., where 

p** and Ps are the density in the mainstream and behind the step, Re** and M** are the Reynolds and Mach numbers). The 

answer to these questions can be obtained either from systematic comparisons of the calculated gasdynamic parameters over a 
wide range with the results of specially designed aerodynamic experiments (which are often complex or impossible) or from a 
comparison with numerical solutions of more exact (unsimplified) equations of gasdynamics. 

This study of a nonuniform supersonic flow past blunt bodies is based on the equations of a complete viscous shock layer 

(CVSL), which are solved numerically by using the effective method of global iterations [7-11]. The high accuracy and speed 
of this method as applied to CSVL equations have been confirmed by a comparison with experiment and the results of numerical 

solution of the Navier-Stokes equations by the method of fixing [7, 9, 10]. 
As shown here, in the case of low Reynolds numbers (Re** = 50-100) the asymptotic formulas for a heat flux from [2] 

give practically the same results as does the numerical solution of TVSL equations. A comparison of the numerical solution of 

TVSL and CVSL equations showed that for a wake-type nonuniform mainstream the TVSL method leads to substantially 

underestimated (by up to 40%) values of the heat flux in the vicinity of the critical point. The critical values of the distance 
between two bodies (one of which is in the wake of the other), at which a separation zone arises on the frontal surface of the 
rear body, calculated by the TVSL method is approximately 1.5-2 times those obtained by using the CVSL equations. 

1. Formulation of the Problem. The steady-state supersonic flow of a nonuniform stream of a viscous ideal gas (of 

the far wake type) past a smooth blunt body is considered. A system of CSVL equations in variables of the Dorodnitsyn type 

is given in [9, 10] and the boundary conditions are expounded in detail in [7]. We used the f'mite-difference method of solving 

equations of a higher order of accuracy, in much the same way as in [7-9]. 
After solving the difference equations, we calculate the distributions of the dimensionless surface heat flux qw, the 

friction coefficient Cf, and the deflection 6 of the shock wave as a function of the longitudinal coordinate x, the nonuniformity 

parameters a, b, c [7], the Reynolds number Re** = p**V**Ro/#~., and the Mach number M**. 
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2. Accuracy of  the Asymptotic Solutions for Moderate Reynolds Numbers. In [2] we obtained an asymptotic solution 

in the vicinity of  the critical line of  the equations of the TVSL for Re < 103, M~. ~, 1, eRe = O(I). We ascertain the accuracy 

of the asymptotic formulas given in [2] by comparing them with the numerical solution of the TVSL and CVSL. Figure 1 shows 

the plot of the deflection of  the shock wave 8 o = yso/eR o [where ~ = (3t - 1/27), Re = p**V~,Ro/# o, tt o = #(To), T o is the 
stagnation temperature] on the Reynolds number for the Prandtl number Pr ffi 0.5, H w = 0.15, M** --, Qo, b = 7.2, c = 3.0, 

for a = 0, 0.02, and 0.04 (curves 1-3, respectively). The solid curves correspond to the TVSL numerical solution and the 

dashed curves, to calculation from the formula from [2]. We note that for large Re numbers the curves reach the asymptotes. 

The deflection of  the shock wave increases as Re decreases.* An increase in the nonunifotmity parameter a results in a 

considerably large shock-wave deflection for all Re. With increasing a and Re the agreement between the numerical and 

analytical solutions for the shock-wave distance becomes worse (the difference is more than 20% for Re > 103). Figure 2 shows 

the dependence of  the heat flux q = Cir at the critical point on Re**, calculated from the CVSL model (solid lines), TVSL 

model (dashed lines), and the formula from [2] (dash-and-dot lines) in uniform (a) and nonuniform (b) streams. The other 

parameters were: M** = 20, Tw/T o = 0.1, Pr = 0.7, b = 7.2, and c = 3. From Fig. 2 we see that the analytical solution and 

TVSL calculation are in good agreement in the uniform and nonuniform cases for Re** < 500. The agreement of the TVSL 

and CVSL results becomes appreciably worse as a and Re~, increase. The results of  analytical solution [2] agree to within 10% 

with calculation of  the CVSL equations in the range 103 < Re** < 3" 103. 
3. Criterion for Simulation under Nonuniform Flow. As shown in [3-7], when the model of  a hypersonic (thin) 

viscous shock layer is used the effect of the nonuniformity of the oncoming wake-type stream manifests itself in the 

neighborhood of  the critical line through the parameter (as ~ --, 0) 

X=  2ab(l+c) 
l - a  ' 

which appears in the series expansion of  the pressure gradient ap/Ox in powers of x. Calculations with the CSVL model show 

that k cannot be used as a similarity criterion for the flow of a nonuniform wake-typo stream past blunt bodies. For proof of 

this assertion we consider a comparison of the results. 
Figure 3 shows the k-dependence of the heat flux qw at the critical point (made dimensionless in accordance with [5, 

6]) 

q ,) 
= t~ 0 - a)' 0 -- a) i (3.1) 

*The numerical and analytical results for 10 < Re < 50 are preliminary and qualitative and need to be refined in the region 

of the transition to models of  a rarefied gas. 
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for the following values of  the determining parameters: M** -- 20, Re** = 104, TwIT o = 0.1. Curves 1-6 correspond to b -- 

1.7, 3.05, 5.4, 7.2, 9.6, and 12.8, while c has a constant value of 3. The solid lines correspond to the solution of the CVSL 

equation and the dashed lines, the TVSL equation. From Fig. 3 we see that as b decreases (b < 3) the curves for Clw separate, 

especially for more exact CVSL equations. The form of the dependence Cl(~,) differs for CVSL and TVSL. In both cases qw(a) 

decreases monotonically. The difference in the functions Cl(k) is due, first, to the more rapid decrease in the heat flux qw with 

growing nonuniformity (parameter a) in the case of TVSL, this being attributed to the assumption of  an equidistant shape of 

the shock wave and the shape of  the body and, second, it is due to the normalization of qw by Eq. (3.1) to a complex B (I - 

a) that is variable in a. Moreover, the curves of  the heat flux qw (corresponding to the solution of  the CVSL equation), plotted 

as a function of  a for the same values of b, lie in a narrow pencil, as is seen from Fig. 3 (the solid curves 1-6, at the bottom). 

A more rigorous calculation from the CVSL model demonstrated that the use of a has some advantages over the use 

of k since the curves qw(a) are almost universal. In [5, 6] it is proposed that the criterion of  transition to separating flow act = 

act (b, c, Re**, M~,, Tw), obtained in [1-4], be replaced by the criterion 

~.cr = ),cr(Re| M**, T~,). 

The fimction her(b) is plotted in Fig. 4 for Re** = 102, 103, 105 (lines 1-3). The solid lines represent calculation from 

the CVSL model and the dashed lines, from the TVSL model [1, 4-6]. The effect of  c on her is seen to be weak. The values 
of her obtained from the TVSL model are virtually independent of b and c for a fixed Re~,. As Re** --- co the asymptotic value 

her = 4/3, obtained in [5, 6] gives good accuracy. Calculation from the CVSL model (solid lines) lead to a linear dependence 

of her on b for a fixed Re**. The plots shown in Fig. 4 support the conclusion of [5, 6] that the TVSL model leads to a 

separation criterion in the form her = const. Calculation from the more exact CVSL model, taking the transfer of  perturbations 

upward along the stream, however, shows that the criterion her = const is unreliable. 

As the separation criterion here we propose to use the formula 

a c t =  {1 + ~o (b, c, Re**)} -1, 
~ ( I  + c) 

1 

~0 = 1.5 + (0.2 + 3.8 Re~, t/2) (b - 2) (3.2) 

obtained by processing the critical values of the nonuniformity parameters calculated from the CVSL model. 

Using the criterion (3.2) and the formulas given in [1, 3], we can determine the critical value of the distance zcr between 

two bodies at which a transition occurs to separation flow on the frontal surface of the rear body, in the supersonic far wake. 

Figure 5 shows the plots so obtained for zcr as a function of the ratio of the diameter of the rear body to that of the front body, 

d = d2/d 1, for fixed Reynolds and Math numbers. The solid curves correspond to M** = 25, the dashed lines to M** = 5, lines 

1-5 to the calculations for Re** = 102, 103, and l0 s, and lines 4, 5 correspond to the critical values of zer obtained in [6] by 

using the criteria her = 4/3 and M** = 25 and 5, respectively. These Zcr(d) curves are also in good agreement with the results 
from [1, 3] as e --, 0. 
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From Fig. 5 we see that for small values of d (d < 2) the TVSL and CVSL models give similar functions Zer(d), which 
alSO follows from the similarity of her for small b (see Fig. 4). For d > 2 the TVSL model gives values of zer that are higher 

by a factor of 1.5-2 than the CVSL results for Re| --- oo. 

Calculation from the CVSL model shows that the values of zcr increase with M~., Re~,, and d. At moderately high Mach 
numbers (Mo, = 5-8) the relative parameters of the bodies have little effect, especially for an intermediate Reynolds number 

(Re,, -- 102-103). For Re~. = 102 and M~, = 5 the values ofzcr reach the asymptote for d _> 5. With decreasing Mach number 

the role of the relative dimensions falls off rapidly, the critical values of Zcr decreasing more rapidly than for moderate Mach 

numbers, and reach limiting values in the Reynolds number. The Mach and Reynolds numbers have only a weak effect on Zcr 
when the relative dimensions of the bodies are close (d = 1-2). 

As a result of the calculations we have established that for each fixed Mach number there is a value d, for which the 

viscosity has no effect on zcr, which is in accord with the asymptotic solutions [3]. The values of zcr increase rapidly with 
increasing Re~, when d > d,. 

In summary, the examples of calculations given here show that the TVSL method becomes less applicable as the 

nonuniformity parameters increase. This can be attributed mainly to the assumption that the shock wave and the surface of the 
body are equidistant. The CVSL method has proven to work well for nonuniform flow past bodies and the proposed method 
of calculations required approximately two orders of magnitude fewer iterations than does the method of fixing for 

Navier- Stokes equations. 
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